Critical exponent of a directed self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1985 J. Phys. A: Math. Gen. 181835
(http://iopscience.iop.org/0305-4470/18/10/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:04

Please note that terms and conditions apply.

COMMENT

Critical exponent of a directed self-avoiding walk

A Baram ${ }^{\dagger}$ and P S Stern
Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Received 6 December 1984, in final form 13 February 1985

Abstract

It has been shown that the angular correlation range is infinite for the directed self-avoiding walk problem on the square lattice. This result implies a one-dimensional-like critical exponent, namely $\nu=1$.

The directed self-avoiding random walk problem (DSAw) on the square lattice has been recently investigated numerically by Chakrabarti and Manna (1983). In this saw model, steps in the x direction are restricted to be only in the positive x direction. Chakrabarti and Manna calculated numerically the average end-to-end distance $\left\langle R_{n}\right\rangle$ for walks of n steps, with values of n up to 14 . They found that for large n

$$
\begin{equation*}
\left\langle R_{n}\right\rangle \simeq n^{\nu} \tag{1}
\end{equation*}
$$

with $\nu=0.86 \pm 0.02$. Redner and Majid (1983) using the transfer matrix approach, Szpilka (1983) using the method of generating functions, Cardy (1983) from a field theoretic approach and Blöte and Hilhorst (1983) using combinatorial arguments all disproved the Chakrabarti and Manna claim and proved that $\nu=1$. In addition, Redner and Majid calculated the following asymptotic expressions for the persistence length along the x axis and the mean square displacement respectively

$$
\begin{align*}
& \left\langle x_{n}\right\rangle=\frac{1}{2} n+\frac{1}{2}(\sqrt{2}-1) \tag{2a}\\
& \left\langle R_{n}^{2}\right\rangle=\frac{1}{4} n^{2}+\frac{7}{8} \sqrt{2} n+\frac{1}{4}\left(\frac{17}{2} \sqrt{2}-1\right) . \tag{2b}
\end{align*}
$$

Szpilka obtained the same results up to order n.
In this comment we utilise the Markovian nature of the problem to obtain closed expressions for the angular correlation functions and the radial moments that are derived from them. Let $\theta_{i j}$ denote the angle between the directions of the i th and j th steps. The average $\left\langle\cos \left(\theta_{i j}\right)\right\rangle_{n},(i \leqslant j)$, contains two types of contributions: (i) all walks with i and j parallel to the x axis; and (ii) all walks with i, j and k pointing in the $+y$ direction for all k obeying $i<k<j$ and with their reflections about the x axis. The contribution of any walk with i and j pointing in the $+y$ direction and at least one kink at the k th step $(i<k<j)$ is averaged out by the contribution of the walk obtained from it by a reflection of the $n-k$ part of the walk about the kink. Thus

$$
\begin{equation*}
\left\langle\cos \left(\theta_{i j}\right)\right\rangle_{n}=\left(1 / c_{n}\right)\left(c_{i}(x) c_{j-1}(x) c_{n-j}+2 c_{i}(y) \tilde{c}_{n-j}\right) \tag{3}
\end{equation*}
$$

where c_{n} is the total number of DSAW with n steps, $c_{n}(x)$ and $c_{n}(y)$ are the number of n-steps DSAW with the last step pointing in the x or $+y$ direction respectively and

[^0]\tilde{c}_{n} is the number of n-step DSAW with the first step not allowed to point in the $-y$ direction. Fisher and Sykes (1959), while deriving lower bounds for the connective constant for saw on the square lattice, calculated c_{n} :
\[

$$
\begin{equation*}
c_{n}=\frac{1}{2}\left(\lambda_{+}^{n+1}+\lambda_{-}^{n+1}\right) \tag{4}
\end{equation*}
$$

\]

where $\lambda_{ \pm}=1 \pm \sqrt{2}$.
It is easy to see that $c_{n}(x)=c_{n-1}, c_{n}(y)=c_{n}(-y)=\frac{1}{2}\left(c_{n}-c_{n-1}\right)$ and $\tilde{c}_{n}=\frac{1}{2}\left(c_{n+1}-c_{n}\right)$ (it should be noted that $c_{-1}=1$). Equation (3) becomes

$$
\begin{align*}
\left\langle\cos \left(\theta_{t j}\right)\right\rangle_{n}= & \frac{1}{c_{n}}\left[c_{i-1} c_{--i-1} c_{n-j}+\frac{1}{2}\left(c_{i}-c_{i-1}\right)\left(c_{n+1-j}-c_{n-j}\right)\right] \\
= & \frac{1}{4\left[1+\left(\lambda_{-} / \lambda_{+}\right)^{n+1}\right]}\left\{\left[1+\left(\lambda_{-} / \lambda_{+}\right)^{i}\right]\left[1+\left(\lambda_{-} / \lambda_{+}\right)^{j-i}\right]\left[1+\left(\lambda_{-} / \lambda_{+}\right)^{n+1-j}\right]\right. \\
& \left.+2 \lambda_{+}^{i-j}\left[1-\left(\lambda_{-} / \lambda_{+}\right)^{i}\right]\left[1-\left(\lambda_{-} / \lambda_{+}\right)^{n+1-j}\right]\right\} . \tag{5}
\end{align*}
$$

Obviously for large $j-i$ values the first term on the RHS of equation (5) representing the type a contribution is much larger than the second term representing the type b contribution to the angular average. For large n and i, j well inside the chain, equation (5) reduces to

$$
\begin{equation*}
\left\langle\cos \left(\theta_{i j}\right)\right\rangle_{n}=\frac{1}{4}\left[1+\left(\lambda_{-} / \lambda_{+}\right)^{j-i}+2 \lambda_{+}^{i^{-j}}\right] . \tag{6}
\end{equation*}
$$

The angular average does not decay to zero for large separations $j-i$, but converges to a constant value. This infinite range of angular correlation reflects the exclusion of reversals in the x direction in the model, and implies a one-dimensional-like critical exponent $\nu=1$. The persistence length $\left\langle x_{n}\right\rangle$ is given by the sum of the projections on the x axis

$$
\begin{equation*}
\left\langle x_{n}\right\rangle=\frac{1}{c_{n}} \sum_{j=1}^{n} c_{j-1} c_{n-j}=\frac{1}{2} n-\frac{1}{2}+\frac{1}{4} \sqrt{2}+\mathrm{O}\left(\lambda_{-} / \lambda_{+}\right)^{n} . \tag{7}
\end{equation*}
$$

The even moments of the end-to-end distance distribution function are given by averages of powers of the cosines (Baram and Gelbart 1977, Baram 1982)

$$
\begin{equation*}
\left\langle R_{n}^{2 k}\right\rangle=\left\langle\left(n+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \cos \left(\theta_{i j}\right)\right)^{k}\right\rangle_{n} \tag{8}
\end{equation*}
$$

In particular the second moment is given by
$\left\langle R_{n}^{2}\right\rangle=n+2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left\langle\cos \left(\theta_{i j}\right)\right\rangle=\frac{1}{4} n^{2}+\frac{7}{8} \sqrt{2} n-\frac{1}{4}\left(\frac{3}{2} \sqrt{2}+1\right)+\mathrm{O}\left(\lambda_{-} / \lambda_{+}\right)^{n}$.
The constant terms in equations (7) and (9) disagree with the constant terms of Redner and Majid, equations ($2 a$) and ($2 b$). Our results for $\left\langle x_{n}\right\rangle$ and $\left\langle R_{n}^{2}\right\rangle$ agree with enumeration results to five decimal places by order seven and nine respectively.

The leading term in the expansion of the fourth moment is $\frac{1}{16} n^{4}$. Therefore the ratio $\left\langle R_{n}^{4}\right\rangle /\left\langle R_{n}^{2}\right\rangle^{2}$ tends asymptotically to unity, indicating that the distribution function is highly concentrated at the point $x=n / 2, y=0$.

References

Baram A 1982 J. Chem. Phys. 775255
Baram A and Gelbart W M 1977 J. Chem. Phys. 664666
Blöte H W J and Hilhorst H J 1983 J. Phys. A: Math. Gen. 163687
Cardy J L. 1983 J. Phys. A: Math. Gen. 16 L355
Chakrabarti B K and Manna S S 1983 J. Phys. A: Math. Gen. 16 L113
Fisher M E and Sykes M F 1959 Phys. Rev. 11445
Redner S and Majid I 1983 J. Phys. A: Math. Gen. 16 L307
Szpilka A M 1983 J. Phys. A: Math. Gen. 162883

[^0]: \ddagger Present address: Soreq Nuclear Research Centre, Yavne 70600, Israel.

